Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci China Life Sci ; 65(7): 1285-1324, 2022 07.
Article in English | MEDLINE | ID: covidwho-1899275

ABSTRACT

RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.


Subject(s)
COVID-19 , RNA , Animals , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Sequence Analysis, RNA
2.
European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology ; 48(1):e24-e24, 2022.
Article in English | EuropePMC | ID: covidwho-1661502
3.
Nat Commun ; 12(1): 3917, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1281717

ABSTRACT

SARS-CoV-2 carries the largest single-stranded RNA genome and is the causal pathogen of the ongoing COVID-19 pandemic. How the SARS-CoV-2 RNA genome is folded in the virion remains unknown. To fill the knowledge gap and facilitate structure-based drug development, we develop a virion RNA in situ conformation sequencing technology, named vRIC-seq, for probing viral RNA genome structure unbiasedly. Using vRIC-seq data, we reconstruct the tertiary structure of the SARS-CoV-2 genome and reveal a surprisingly "unentangled globule" conformation. We uncover many long-range duplexes and higher-order junctions, both of which are under purifying selections and contribute to the sequential package of the SARS-CoV-2 genome. Unexpectedly, the D614G and the other two accompanying mutations may remodel duplexes into more stable forms. Lastly, the structure-guided design of potent small interfering RNAs can obliterate the SARS-CoV-2 in Vero cells. Overall, our work provides a framework for studying the genome structure, function, and dynamics of emerging deadly RNA viruses.


Subject(s)
COVID-19/pathology , RNA, Viral/chemistry , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Virion/genetics , Animals , COVID-19/genetics , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Genome, Viral , Humans , Nucleic Acid Conformation , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Virion/chemistry , Virion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL